x^2+(x^2+7)=17

Simple and best practice solution for x^2+(x^2+7)=17 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+(x^2+7)=17 equation:



x^2+(x^2+7)=17
We move all terms to the left:
x^2+(x^2+7)-(17)=0
We get rid of parentheses
x^2+x^2+7-17=0
We add all the numbers together, and all the variables
2x^2-10=0
a = 2; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·2·(-10)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*2}=\frac{0-4\sqrt{5}}{4} =-\frac{4\sqrt{5}}{4} =-\sqrt{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*2}=\frac{0+4\sqrt{5}}{4} =\frac{4\sqrt{5}}{4} =\sqrt{5} $

See similar equations:

| 9-3x=5x-23 | | X*(x+7)=17 | | 3/2u−2/11=7/8 | | 10x+2(x+5)=4-2x | | -2,5(4r+8)=r(10-5) | | 7x-8=9x-14 | | (2x+4)/3=(5x-8)/2 | | 6n-16=2n+20 | | (2x+4)3=(5x-8)2 | | 85+120+101+(3x-6)=360 | | 4(n+3)=6n+82n | | 25*2×+36=60x | | x4+-16x2+24x+-9=0 | | 20-3x=5x+12 | | 2x+4/3=5x-8/2 | | 6t^2+5t-10=0 | | 11x-5+6x+8=3x+31 | | 6x=(4x+50) | | 12h–11h=2 | | 23x-3=3x+2 | | 4x-9=1-2× | | 5–4g=-5g | | X/2+4=3x/4 | | 4x^2+12x-34=0 | | 2x+13+57+3×=180 | | 6-4^x=-62 | | 64=2^x | | 4c+5=1 | | 1-x/0.3=3 | | (2x+5)^2=x(11x+15)+27 | | 5x+2+2x=12-3x | | 25x^2+30x+9=16 |

Equations solver categories